
LLNL-PRES-636652

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. It
was supported in part by Department of Energy grants DE-
SC0004061, 07ER25800, DE-SC0003922, DESC0002153, DE-
SC0002154, and DE-SC0002155.

Efficient and Scalable Retrieval Techniques

for Global File Properties

IPDPS 2013, 5/21/2013

LLNL-PRES-636652
2

Efficient file accesses are becoming

increasingly important and challenging

 Large-scale system sizes continue to grow

 This exponential growth in concurrency makes efficient file

accesses increasingly important

 But optimizing file accesses require detailed run-time knowledge of

file systems and location(s) of files on them

 HPC does not have a common, scalable way to retrieve such

global file information

LLNL-PRES-636652
3

 KULL: a large, mission-critical multi-physics simulation code

 When this application was first run on DAWN, program start-up

appeared to scale very poorly

 Start-up significantly disrupted the entire computing facility

 16,384 instances of the dynamic loader (ld.so) were making

combined 300 million open calls to an NFS server

• 16K X 20 (lib search paths) X ~1000 (dependent shared libs) = 300M !

Program start-up manifested as a denial-of-

service attack: A lesson learned

LLNL-PRES-636652
4

All software elements on extreme-scale

machines must efficiently use file systems

 Challenges go beyond large dataset access patterns: dynamic

loader, run-time tools, input-deck readers, scripting languages etc

 Must optimize their file access schemes and consider a trade-off

between communication and file accesses

 Optimization requires detailed run-time information of file systems

and location(s) of files on them

 Non-trivial: today’s machines mount many file systems with different

performance characteristics

Need scalable, general-purpose mechanisms and
abstractions to retrieve global file properties:

Fast Global File Status (FGFS)

LLNL-PRES-636652
5

The trade-off space: HPC file distribution

models introduce many different issues

Uniquely Served Fully Distributed

• Scalability
• Latency
• Per-node info

• Consistency
• Space
• Info sharing

P … P P … P P P … P P … P P P P P

Emerging Issues

LLNL-PRES-636652
6

FGFS is a query layer that assists HPC

software in making I/O trade-off decisions

 Responsible for scalably classifying files and file systems

 Supports I/O trade-off decisions for a wide range of HPC software

 Directly with the software itself or through a global file I/O coordinator

Loader, runtime tools, scripting languages, applications

Communication

Fabrics

Global File I/O Coordinator
IPDPS

File Systems

ICS

LLNL-PRES-636652
7

Key idea for scalability: extracting global

properties through name comparisons

 Is this file uniquely served?
 Is this file fully distributed?
 Will N simultaneous accesses thrash file systems or not?
 …

nfs://s1-nfs.llnl.gov:/a/foo/bar nfs://s2-nfs.llnl.gov:/b/foo/bar

Node 1 Node N
…

/foo/bar /foo/bar

LLNL-PRES-636652
8

MountPointAttributes resolves a local file path

into URI with no file-system access

string & resolvePath(const char *pth) {

 string uriStr;

 FileUriInfo uriInfo;

 MountPointInfo mpInfo(true);

 mpInfo.getFileUriInfo(pth, uriInfo);

 uriInfo.getUri(uriStr);

 return uriStr;

}

void manageConfigs() {

 char *lid1="/etc/tool/conf";

 char *lid2="/usr/etc/tool/conf";

 char *lid3="/home/joe/.tool/conf";

 char *lid4="/lscracta/j_cwd/conf";

 string gid1 = resolvePath(lid1);

 string gid2 = resolvePath(lid2);

 string gid3 = resolvePath(lid3);

 string gid4 = resolvePath(lid4);

 ...

}

file://node1/etc/tool/conf

node1

nfs://s1-nfs.llnl.gov:/e/usr/etc/tool/conf

nfs://dip-nfs.llnl.gov:/v/joe/.tool/conf

lustre://172.16.60.200:/tmp/j_cwd/conf

LLNL-PRES-636652
9

 The global namespace forms a reference space where parallel
name comparisons extract global properties

• the number of different sources

• the process count and the representative process of each source

 FgfsParDesc is a primitive that returns this info

 GlobalFileStatusAPI exposes the HPC file distribution models

• isUnique(), isFullyDistributed()

• isWellDistributed(), isPoorlyDistributed()

• isConsistent()

 Support for both synchronous and asynchronous I/O patterns

• SyncGlobalFileStatus

• AsyncGlobalFileStatus

Global File Status queries capture our HPC file

distribution models and pertaining issues

LLNL-PRES-636652
10

 Cardinality/Group-info of the reduced list conveys a global structure

 A representative of each unique source helps minimize file accesses

 A tree-based parallel reduce for the general case

• But scales like concatenation with too many unique names

 A multilevel triaging scheme imposes a scalability bound

• First level: a fix-sized boolean reduce to determine isFullyDistributed()

A highly scalable reduction algorithm extracts

the degree of file distribution or replication

 file 𝑼𝑹𝑰(𝒇𝒊𝒍𝒆)𝟎, 𝑼𝑹𝑰(𝒇𝒊𝒍𝒆)𝟏 , … , 𝑼𝑹𝑰(𝒇𝒊𝒍𝒆)𝒏−𝟏

 𝑼𝒏𝒊𝒒𝒖𝒆𝑼𝑹𝑰(𝒇𝒊𝒍𝒆)𝟎, … , 𝑼𝒏𝒊𝒒𝒖𝒆𝑼𝑹𝑰(𝒇𝒊𝒍𝒆)𝒎

 Raise

Reduce

LLNL-PRES-636652
11

Next refinement: Bloom-filter-based cardinality

estimation

1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 …

 Maximum likelihood cardinality estimation:
𝐥𝐧 𝟏−

𝒕

𝒎

𝒌 ∗𝐥𝐧 (𝟏−
𝟏

𝒎
)

• 𝑚 num of bits, 𝑡 is the num of true bits, and 𝑘 is the num of hash functions

 Set the Bloom-filter density to be 50% with respect to the worse case

• The worst case for billion-core machine needs ~150KB

1 1 0 1 0 0 1 1

BOR Reduction

nfs://s1-nfs.llnl.gov:/a/foo/bar nfs://s2-nfs.llnl.gov:/b/foo/bar

Node 1 Node N …

Local BF Local BF

LLNL-PRES-636652
12

 Inverse function of global file status queries

• Given a set of required global properties of a file system, what are the best

matching locations?

 GlobalFileSystemsStatus

• Is passed a FileSystemCriteria object

• Mandatory space requirement, and optional speed, distribution, and

scalability requirements

 A scoring function estimates performance and orders qualified file systems

𝑺𝒄𝒂𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒇𝒊𝒍𝒆 𝒔𝒚𝒔𝒕𝒆𝒎

𝐌𝒂𝒙 (𝑺𝒄𝒂𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒇𝒊𝒍𝒆 𝒔𝒚𝒔𝒕𝒆𝒎 , 𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒇𝒊𝒍𝒆 𝒔𝒚𝒔𝒕𝒆𝒎)
∗ 𝑺𝒑𝒆𝒆𝒅(𝒇𝒊𝒍𝒆 𝒔𝒚𝒔𝒕𝒆𝒎)

Global file systems status queries retrieve file

systems that meet global properties requirements

LLNL-PRES-636652
14

 Primary evaluation goals

• The performance and scalability of various FGFS queries

• The effectiveness and utility of FGFS on a variety of HPC software

 Controlled experiments and three case studies

• Benchmark FGFS performance on three multi-physics applications

• Integrate FGFS to HPC elements with vastly different characteristics

 Ran on Linux clusters installed at LLNL

• 2-socket x 8-core Intel Sandy Bridge (2.6GHz) with 32 GB of RAM

• The largest cluster (Zin) with up to 2,916 compute nodes = 46,656 cores

• Qlogic Infiniband QDR interconnect

Our experiments are to evaluate FGFS’

capability of assisting file access optimization

LLNL-PRES-636652
15

Most file status queries on KULL (w/ 848 shared

libraries) complete in 272 msecs at 32K procs

LLNL-PRES-636652
17

FGFS addressed a scalability challenge in

STAT’s accessing of file systems

On KULL (with big executable mode)

Log scaling with 𝑅2 = .958

LLNL-PRES-636652
18

 SPINDLE (Scalable Parallel Input Network for Dynamic Loading

Environment)

 SPINDLE file-cache servers form a tree-based network and

coordinate file-system accesses of the dynamic loader.

 SPINDLE servers use AsyncGlobalFileStatus to choose between

a direct file-system access and file broadcasting.

 The Pynamic benchmark was shown to scale well up to 15,360 MPI

processes with no disruption to shared file systems

FGFS serves as a key component of a novel

massive parallel loading service

We will present details of SPINDLE at ICS
(6/10/13 – 6/14/13, Eugene, Oregon).

LLNL-PRES-636652
19

 Efficient files accesses are increasingly important and challenging

 Developed Fast Global File Status as a scalable, portable

mechanism to retrieve global information on files or file systems

 FGFS queries are highly scalable and provide orders-of-magnitude

improvements over traditional approaches

 Various case studies suggest that FGFS can be effective for a wide

range of HPC software elements

 FGFS will deeply be integrated into various HPC software systems,

extending its benefits to many essential elements of HPC

FGFS facilitates efficient, non-disruptive use of file

systems for a wide range of HPC software

• MountPointAttributes has been released:
http://dongahn.github.io/MountPointAttributes

• Other components coming soon.

http://dongahn.github.io/MountPointAttributes
http://dongahn.github.io/MountPointAttributes

